skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rosenzweig, Jason A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Indoor dust can be a major source of heavy metals, nutrients, and bacterial contamination in residential environments and may cause serious health problems. The goal of this research is to characterize chemical and bacterial contaminants of indoor, settled house dust in the Houston Metropolitan region. To achieve this, a total of 31 indoor dust samples were collected, along with household survey data, which were subsequently analyzed for elemental and bacterial concentrations. Microscopic and geospatial analysis was conducted to characterize and map potential hotspots of contamination. Interestingly Cd, Cr, Cu, Pb, and Zn concentrations of all 31 indoor dust samples were significantly enriched and exceeded soil background concentrations. Furthermore, As, Cd, Pb, and Zn concentrations in the dust samples were significantly correlated to the enteric bacterial load concentrations. Human health assessment revealed that cancer risk values via ingestion for Cd, Cr, and Ni were greater than the acceptable range. Of our 31 dust sample isolates, three Gram-negative and 16 Gram-positive pathogenic bacteria were identified, capable of causing a wide range of diseases. Our results demonstrate that both chemical and bacterial characterization of indoor dust coupled with spatial mapping is essential to assess and monitor human and ecological health risks. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
    and cover changes impact the soil and water quality which are critical for environmental and human health. The goal of this study is to evaluate whether the land cover change along the Tigris River, one of the largest rivers in the Middle East, is causing any heavy metal contamination. The objectives of this study were: (1) To analyze the metal concentrations in the water and soil samples along the Tigris River and (2) identify and map the land cover changes of the Baghdad district. A total of nine water and soil samples were collected from three different Tigris River (TR) sampling locations, namely Gherai´at (TR1), Bab Al Moatham Bridge (TR2), and Karada-Masbah (TR3). Surface soil and water samples were collected, and analyzed for various metal concentrations. Landsat satellite imagery from 1984 and 2018 were analyzed and compared for land cover changes. Our water sample analysis revealed that As, Cd, Cr, Cu, Pb and Zn remained low and are within the permissible limit of WHO standards. Soil samples showed that Cu, and Pb concentrations in TR1 and TR2, respectively were higher compared to other locations. The metal concentrations in both water and soil samples at the sampled locations were at safe levels. Remote sensing analysis revealed that the water surface in the study area increased by about 5.3% while the vegetative surface decreased by 10.3% during the period of 1984 to 2018. Water and vegetative cover increased further in the south of Baghdad, along the Tigris River, compared to the north. The impact of land cover changes and increase in soil metal concentrations are higher on TR2 and TR3 locations. Environmental chemical analysis coupled with geospatial data helps to monitor the impact of land cover changes on water and soil quality by identifying areas vulnerable to change. 
    more » « less